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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences 
scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new 
edition of Web of Science. Content in this index is under consideration by Clarivate Analytics 
to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and 
the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to 
researchers, authors, publishers, and institutions sets it apart from other research  databases.  
The  inclusion  of News  of  NAS  RK.  Series  of  geology  and  technical sciences in the 
Emerging Sources Citation Index demonstrates our dedication to providing the most relevant 
and influential content of geology and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған 
нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. 
Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science 
Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities 
Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, 
авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР 
ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы Emerging Sources Citation 
Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық 
ғылымдар бойынша контентке адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических 
наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии 
Web of Science. Содержание в этом индексировании находится в стадии рассмотрения 
компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation 
Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web 
of Science предлагает качество   и  глубину   контента   для   исследователей,  авторов,  
издателей  и  учреждений. Включение Известия НАН РК. Серия геологии и технических 
наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее 
актуальному и влиятельному контенту по геологии и техническим наукам для нашего 
сообщества.
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Ғылыми хатшы
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ғылымдарының докторы, профессор, ҚР ҰҒА академигі, «У.М. Ахмедсафина атындағы 
гидрогеология және геоэкология институтының» директоры (Алматы, Қазақстан) H = 2
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профессор, РҒА академигі, А.А. Трофимука атындағы мұнай-газ геологиясы және геофизика 
институты (Новосибирск, Ресей) H = 19

АГАБЕКОВ Владимир Енокович, химия ғылымдарының докторы, Беларусь ҰҒА академигі, 
Жаңа материалдар химиясы институтының құрметті директоры (Минск, Беларусь) H = 13

КАТАЛИН Стефан, Рһ.D, Дрезден техникалық университетінің қауымдастырылған профессоры 
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ANALYSIS OF EXISTING METHODS FOR CALCULATING THE 
ROUGHNESS COEFFICIENT OF CHANNELS ALONG THE PERIMETER 

OF THE CHANNEL

Abstract. The scientific work examines the issues of the channel roughness 
coefficient and the uniform movement of water in channels with bottom roughness. 
The analysis of existing methods for calculating the roughness coefficient of channels 
along the perimeter of the channel is given. The methods of determining the roughness 
coefficient of famous scientists such as P.N. Belokon, G.K. Lotter, N.N. Pavlovsky 
for channels consisting of two or three slopes along the perimeter of the channel 
are presented and analyzed. When designing channels with a soil base, the reduced 
roughness coefficient of the channel, which forms the basis of the resistance of the 
plantar structure along the length of the channel, plays a decisive role. Currently, there 
are a number of computational relationships proposed for hydraulic calculations of 
water flow along the perimeter of the channel. A number of researchers claim that the 
soil of the channel bottom simulates the flow movement in different channels with the 
flow movement under the ice layer. But, it should be borne in mind that the soil of 
the channel bottom has its own characteristic (specific) features of water movement in 
open channels with different roughness and under ice cover. The calculation formulas 
proposed by a number of authors for channels with different lengths along the perimeter 
cannot be used directly for hydraulic calculations of the flow under the ice cover, and 
vice versa, the equations of water flow under the ice cover do not apply even for channels 
with different roughness along the perimeter. 

In general, the solution to the main computational relationship is to determine 
the perimeters and areas included in separate disparate sections. Determining the 
perimeters of individual parts does not create any special difficulties and is defined as the 
corresponding face of a geometric figure. Taking into account the fact that the edge of 
the wall should lie on the considered sole of the channel. But to determine the area of the 
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figures adjacent to the walls in an individual appearance is quite a complicated matter. 
Approaches of well-known scientists in the scientific literature, such as P.N. Belokon, 
G.K. Lotter, N.N.Pavlovsky and E.E. Schiperko are based on the phenomenon of flow 
and large assumptions about the equality of the hydraulic radii of individual parts and the 
whole channel, as well as the equality of the average speeds of individual parts and the 
whole flow, but in fact they are not. Current measurements in the laboratory, performed 
by us and other authors, show that they differ in magnitude and allow significant errors 
in calculations. Thus, we came to the conclusion that an attempt to solve the problem 
of the reduced roughness coefficient using generally accepted approaches did not allow 
us to obtain the desired results: it is not enough to use only the equation of uniform 
motion, and, therefore, it is necessary to consider other ways to solve the problem. 
In our opinion, the simplest method is used by all authors who have dealt with the 
calculation of channels of varying degrees of complexity.

Key words: channel, uniform motion, roughness coefficient, steady motion, average 
velocity, channel perimeter, channel cross-section, hydraulic radius.

С. Жолдасов1*, С. Тәттібаев1, З. Бимурзаева1, М. Байжигитова1, Г. Логинов2
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ПЕРИМЕТРІ БОЙЫНША КАНАЛДАРДЫҢ БҰЖЫРЛЫҚ 
КОЭФФИЦИЕНТІ ӘРТҮРЛІЛІГІН ЕСЕПТЕУДІҢ ҚОЛДАНЫСТАҒЫ 

ӘДІСТЕРІН ТАЛДАУ

Аннотация. Ғылыми мақалада табаны бұжырлы каналдардағы бірқалыпты 
қозғалыс және арнаның бұжырлық коэффициентін (коэффициент шероховатости) 
анықтау мәселелері қарастырылады. Периметрі бойынша каналдардың бұжырлық 
коэффициенті әртүрлілігін есептеудің қолданыстағы әдістерін талдау жүргізіледі. 
Белгілі ғалымдар - П.Н. Белоконь, Г.К. Лоттер, Н.Н. Павловскийлердің периметрі 
бойынша екі-үш бөліктен тұратын жақтаулы арналар үшін бұжырлық коэффициентін 
анықтаудың әдістері келтіріледі. Топырақ арнада өтетін каналдарды жобалау 
кезінде, канал ұзындығы бойымен табаны құрылымының қарсылығы негізін 
құрайтын арнаның келтірілген бұжырлық коэффициенті шешуші рольді атқарады. 
Қазіргі уақытта, арнаның периметрі бойынша су ағынының гидравликалық 
есептеулері үшін ұсынылатын бірқатар есептеу байланыстылықтары бар. Бірқатар 
зерттеушілер, арнасының бұжырлығы әркелкі каналдардағы ағын қозғалысын, 
мұз қабаты астындағы ағын қозғалысымен ұқсатады. Бірақ, мынаны ескере кету 
керек, арна бұжырлығы әртүрлі ашық каналдардағы және мұз қабаты астындағы 
су қозғалысының өзіндік тән (спецификалық) ерекшеліктері болады. Периметрі 
бойынша бұжырлығы әртүрлі арналар үшін бірқатар авторлармен ұсынылған 
есептік формулалар – мұз қабаты астындағы ағынды гидравликалық есептеулер 
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кезінде тікелей пайдаланылуы мүмкін емес, және керісінше периметрі бойынша 
бұжырлығы әртүрлі арналар үшін де мұз қабаты астындағы су ағыны қозғалысы 
теңдеулері қолданылмайды. 

Жалпы айтқанда, негізгі есептік байланыстылықты шешу, жеке бұжырлық 
мәнді қималарға енетін суланған периметрлер мен аудандарды анықтаудан тұрады. 
Жеке бөліктердің суланған периметрлерін анықтау, аса көп қиыншылықтар туғыза 
қоймайды және олар геометриялық фигураның тиісті қыры ретінде анықталады. 
Мынаны ескере кету керек, қабырға қыры арнаның қарастырылатын табанына 
жатуы тиіс. Бірақ, жеке бұжырлықтағы қабырғаларға түйісетін фигуралар ауданын 
анықтау, өте қиын мәселе. Ғылыми әдебиеттердегі белгілі – П.Н. Белоконь, 
Г.К. Лоттер, Н.Н. Павловский және Е.Э. Шиперколардың тәсілдері, ағынның 
құбылысына және жеке бөліктер мен тұтас арнаның гидравликалық радиусы 
теңдігі және де жеке бөліктер мен тұтас ағынның орташа жылдамдықтары теңдігі 
туралы үлкен рұқсат берулерге (допущения) негізделген, бірақ олар іс жүзінде 
ондай болмайды. Біз және де басқа авторлармен орындалған лабораториялық 
жағдайлардағы ағымдағы өлшеулер көрсеткендей, олар едеуір шек шамасында 
ерекшеленеді және олар есептеулер кезінде айтарлықтай қателіктерге жол береді. 
Сонымен, мынадай қорытындыға келеміз, жалпы қабылданған тәсілдерді қолдана 
отырып, келтірілген бұжырлық коэффициенті туралы мәселені шешуге талпыныс 
жасау, бізге қажет нәтижелерді алуға жол бермеді: бірқалыпты қозғалыс теңдеуін 
ғана пайдалану жеткіліксіз, және соған орай, қойылған мәселені шешудің басқа да 
жолдарын қарастыру керек. Біздің ойымызша, әртүрлі бұжырлықтағы арналарды 
есептеу мәселелерімен айналысқан барлық авторлар жүгінетін ең қарапайым әдіс.

Түйінді сөздер: канал, бірқалыпты қозғалыс, бұжырлық коэффициенті, 
орныққан қозғалыс, орташа жылдамдық, арна периметрі, арнаның өтім (көлденең) 
қимасы (поперечное сечение), гидравликалық радиус.
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АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ РАСЧЕТА КОЭФФИЦИЕНТА 
ШЕРОХОВАТОСТИ КАНАЛОВ ПО ПЕРИМЕТРУ РУСЛА

Аннотация. В научной работе рассматриваются вопросы коэффициента 
шероховатости русла и равномерное движение воды в каналах с шероховатостью 
дна. Дан анализ существующих методов расчета коэффициента шероховатости 
каналов по периметру русла. Приводится и дается анализ методов определения 
коэффициента шероховатости известных ученых, таких как П.Н. Белоконь, Г.К. 
Лоттер, Н.Н. Павловский для русел, состоящих из двух-трех откосов по периметру 
русла. При проектировании каналов с грунтовым основанием определяющую роль 
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играет приведенный коэффициент шероховатости канала, составляющий основу 
сопротивления подошвенной конструкции по длине канала. В настоящее время 
существует ряд расчетных связей, предлагаемых для гидравлических расчетов 
расхода воды по периметру канала. Ряд исследователей утверждает, что грунт дна 
канала имитирует движение потока в разных каналах с движением потока под 
слоем льда. Но следует учитывать, что грунт дна канала имеет свои характерные 
(специфические) особенности движения воды в открытых каналах с различной 
шероховатостью и под ледяным покровом. Расчетные формулы, предложенные 
рядом авторов для каналов с разной протяженностью по периметру, не могут быть 
использованы непосредственно при гидравлических расчетах потока под ледяным 
покровом, и, наоборот, уравнения движения потока воды под ледяным покровом 
не применяются даже для каналов с разной шероховатостью по периметру. 

В общем, решение основной расчетной взаимосвязи заключается в определении 
периметров и площадей, входящих в отдельные разрозненные сечения. 
Определение периметров отдельных частей не создает особых сложностей и 
определяется как соответствующая грань геометрической фигуры. С учетом 
того, что ребро стены должно лежать на рассматриваемой подошве канала. Но 
определить площадь фигур, примыкающих к стенам в индивидуальном облике, – 
дело довольно сложное. Подходы известных в научной литературе ученых, таких 
как  П.Н. Белоконь, Г.К. Лоттера, Н.Н. Павловский и Е.Э. Шиперко основаны на 
явлении потока и больших допущениях о равенстве гидравлических радиусов 
отдельных частей и целого канала, а также  равенстве средних скоростей отдельных 
частей и целого потока, но на самом деле они это не так. Текущие измерения в 
лабораторных условиях, выполненные нами и другими авторами, показывают, что 
они различаются по величине и допускают значительные ошибки при расчетах. 
Таким образом, мы пришли к выводу, что попытка решить вопрос о приведенном 
коэффициенте шероховатости с использованием общепринятых подходов не 
позволила нам получить желаемые результаты: недостаточно использовать только 
уравнение равномерного движения, и, следовательно, необходимо рассмотреть 
другие пути решения поставленной задачи. На наш взгляд, самый простой метод, 
к которому прибегают все авторы, занимавшиеся вопросами расчета каналов 
различной степени сложности.

Ключевые слова: канал, равномерное движение, коэффициент шероховатости, 
установившееся движение, средняя скорость,  периметр русла, поперечное 
сечение русла, гидравлический радиус.

Introduction. In principle, most channels and canals used in hydraulic engineering 
have the same stiffness coefficient of the frame and base. As a result of long-term 
operational use, it is possible that the roughness coefficient along the perimeter of the 
channel will change due to changes in flow during the growing season.

The coefficient of stiffness of the bottom and frame of the channel, as well as the 
water permeability and filtration properties of the base layer are also affected. The main 
goal of our research is to determine the roughness coefficient on the perimeter of the 
channel in a common way (Altshul et al, 1973).
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Due to the fact that large main canals built for inter-basin distribution of river flow 
are designed in earthen channels, protection of canals from wave actions of various 
types (due to wind, ship traffic, wave movement) becomes more relevant. One of the 
reinforcement measures for channel frames is covering them with protective covers, 
which, in addition to protecting the banks from wave erosion, can also solve the design 
stability problems of the channel, and are more economical compared to unreinforced 
channels with a cross-section through overgrown with vegetation, loose soils and in deep 
excavations, especially on alignments allows designing effective channels (Imanaliyev 
et al, 2022).

When designing canals passing through a soil channel with a small part of the cross-
section fixed, the coefficient of stiffness of the channel, which forms the basis of the 
resistance of the base structure along the length of the channel, plays a decisive role 
(Chow, 1969). Currently, there are a number of computational relationships proposed 
for hydraulic calculations of water flow along the perimeter of the channel. A number 
of researchers compare the flow movement in channels of different channel stiffness 
with the flow movement under the ice sheet. However, it should be noted that water 
movement in open channels with different channel thicknesses and under the ice layer 
has its own characteristic (specific) features (Koibakov et al, 2020). Calculation formulas 
proposed by many authors for channels with different stiffness along the perimeter 
cannot be directly used in hydraulic calculations of the flow under the ice sheet, and on 
the contrary, the equations of water flow under the ice sheet are not used for channels 
with different stiffness along the perimeter. Allowances (admissions) made during the 
compilation of these formulas cannot be accepted (Koibakov et al, 2020).

Materials and methods. The research method is theoretical, and processing of 
existing materials was carried out.

Method of roughness averaged over the perimeter of the channel. The meaning of 
this method is that, knowing the values of the individual parts of the channel along the 
perimeter (n1 and n2) and the corresponding wetted perimeters, the roughness coefficient 
of such a channel can be determined by the following expression (Altshul et al 1984):

many authors for channels with different stiffness along the perimeter cannot be directly used in 
hydraulic calculations of the flow under the ice sheet, and on the contrary, the equations of water flow 
under the ice sheet are not used for channels with different stiffness along the perimeter. Allowances 
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2020). 
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This method is considered very rough and approximate. The resulting roughness coefficient of 
the channel is more dependent on the hydraulic radius than the wetted perimeter of the channel 
(Baizhigitova, 2020).  

G.K. Lotter's method. G.K. Lotter (Altshul et al, 1973) uses the composite channel calculation 
method when calculating channels with different stiffness along the channel perimeter. The water flow 
of the composite channel is equal to: 
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where: 1Q  and 2Q  – flows in the first and second parts of the flow. We can express the flow 

of water using the Schezi formula: 
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where: 𝜔𝜔 – cross-sectional area; 𝑅𝑅 – hydraulic radius of the entire cross-sectional area; 𝐶𝐶пр – 

the appropriate quoted Schezi coefficient for the entire cross-section (Baizhigitova, 2020); 
  𝜔𝜔1 and 𝜔𝜔2 – areas of cross-sections of flow parts located in the region of influence of 

homogeneous stiffness; 
 𝑅𝑅1 and 𝑅𝑅2 – hydraulic radii of sections 1 and 2 of the cross section; 
  𝐶𝐶1 and 𝐶𝐶2 – Shezi coefficients of parts 1 and 2 of the cross section; 
 J  - piezometric slope. 
Since the movement in the first and second parts of the channel cross-section and due to the 

effect of the slope is the same, the previous equation can be written as (Altshul et al, 1973): 
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 where:   - wetted perimeter of the entire cross section; 1  and 2  - wetted perimeters in 
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As we can see from equation (4), to find "C_pr" it is necessary to know the hydraulic radii of 
individual parts of the cross-section, in addition to the wetted perimeters of parts with different 
thicknesses (Altshul et al, 1973). In this case, the hydraulic radii of individual parts of the cross section 
are determined as found for the composite channel (Ibrayev, 2022). For very wide channels, the wetted 
perimeter may be assumed to equal to the width of the channel, and the hydraulic radius to be equal to 
the average depth of water in the area under consideration. In this case, equation (4) is written as 
follows (Baizhigitova, 2020): 
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where 1b  and 2b -  are the widths of compartments 1 and 2, respectively, and are the water 
depths in compartments 1 and 2, respectively.  

For channels covered with an ice layer, G. K. Lotter (Altshul et al, 1973) takes the hydraulic 
radii of individual parts of the flow as equal to the hydraulic radius of the entire flow:  
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where: Q1 and Q2 – flows in the first and second parts of the flow. We can express the 
flow of water using the Schezi formula:
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many authors for channels with different stiffness along the perimeter cannot be directly used in 
hydraulic calculations of the flow under the ice sheet, and on the contrary, the equations of water flow 
under the ice sheet are not used for channels with different stiffness along the perimeter. Allowances 
(admissions) made during the compilation of these formulas cannot be accepted (Koibakov et al, 
2020). 

Materials and methods. The research method is theoretical, and processing of existing 
materials was carried out. 

Method of roughness averaged over the perimeter of the channel. The meaning of this method 
is that, knowing the values of the individual parts of the channel along the perimeter (n1 and n2) and 
the corresponding wetted perimeters, the roughness coefficient of such a channel can be determined by 
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where b1 and b2-  are the widths of compartments 1 and 2, respectively, and are the 
water depths in compartments 1 and 2, respectively. 

For channels covered with an ice layer, G. K. Lotter (Altshul et al, 1973) takes the 
hydraulic radii of individual parts of the flow as equal to the hydraulic radius of the 
entire flow:	
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Since the wet perimeter of the channel is and the ice perimeter is equal, the hydraulic 
radius of the entire section is equal:
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In addition, the methods of P. N. Belokon and N. N. Pavlovsky (Altshul et al, 1987) were 
published independently (Grishanin, 1992). 

P.N. Belokon's method. 
We consider the channel section of any shape, we take the roughness of the wetted perimeter 

in the first part as n1 and in the second part as n2 (Haicai et al, 2018). 
We find the backflow (fall) per unit length of the channel by the following formula (Koibakov 

and et all, 2020). 
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where: F  - the sum of fictitious friction forces on the channel walls. We denote the average 
false friction force per 1 m2 area of the channel wall by τ_1 in the first part and τ_2 in the second part, 
respectively (Altshul et al, 1973). 
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If 𝐶𝐶1 and 𝐶𝐶2 are expressed by Manning's formula, then equation (16) takes the following form 
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where: F - the sum of fictitious friction forces on the channel walls. We denote the 
average false friction force per 1 m2 area of the channel wall by τ_1 in the first part and 
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If C1 and C2 are expressed by Manning’s formula, then equation (16) takes the 
following form
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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We find the equation (17) by substituting the following equation (16): 









+

+
= 2

2
2

1

2 1
1 C

a
Ca

RJ 
, that follows RJ

CaC
aCC 
+
+

= 2
2

2
1

21
1                  (18) 

			   (12)

Full settlement will be equal: 

many authors for channels with different stiffness along the perimeter cannot be directly used in 
hydraulic calculations of the flow under the ice sheet, and on the contrary, the equations of water flow 
under the ice sheet are not used for channels with different stiffness along the perimeter. Allowances 
(admissions) made during the compilation of these formulas cannot be accepted (Koibakov et al, 
2020). 

Materials and methods. The research method is theoretical, and processing of existing 
materials was carried out. 

Method of roughness averaged over the perimeter of the channel. The meaning of this method 
is that, knowing the values of the individual parts of the channel along the perimeter (n1 and n2) and 
the corresponding wetted perimeters, the roughness coefficient of such a channel can be determined by 
the following expression (Altshul et al 1984): 
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This method is considered very rough and approximate. The resulting roughness coefficient of 
the channel is more dependent on the hydraulic radius than the wetted perimeter of the channel 
(Baizhigitova, 2020).  

G.K. Lotter's method. G.K. Lotter (Altshul et al, 1973) uses the composite channel calculation 
method when calculating channels with different stiffness along the channel perimeter. The water flow 
of the composite channel is equal to: 

21 QQQ +=                                                                                                                                                     (2) 
where: 1Q  and 2Q  – flows in the first and second parts of the flow. We can express the flow 

of water using the Schezi formula: 
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where: 𝜔𝜔 – cross-sectional area; 𝑅𝑅 – hydraulic radius of the entire cross-sectional area; 𝐶𝐶пр – 

the appropriate quoted Schezi coefficient for the entire cross-section (Baizhigitova, 2020); 
  𝜔𝜔1 and 𝜔𝜔2 – areas of cross-sections of flow parts located in the region of influence of 

homogeneous stiffness; 
 𝑅𝑅1 and 𝑅𝑅2 – hydraulic radii of sections 1 and 2 of the cross section; 
  𝐶𝐶1 and 𝐶𝐶2 – Shezi coefficients of parts 1 and 2 of the cross section; 
 J  - piezometric slope. 
Since the movement in the first and second parts of the channel cross-section and due to the 

effect of the slope is the same, the previous equation can be written as (Altshul et al, 1973): 
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 where:   - wetted perimeter of the entire cross section; 1  and 2  - wetted perimeters in 
sections 1 and 2 of the cross section. 

Dividing the given equation into two parts and denoting the / ratio by a, we get: 
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As we can see from equation (4), to find "C_pr" it is necessary to know the hydraulic radii of 
individual parts of the cross-section, in addition to the wetted perimeters of parts with different 
thicknesses (Altshul et al, 1973). In this case, the hydraulic radii of individual parts of the cross section 
are determined as found for the composite channel (Ibrayev, 2022). For very wide channels, the wetted 
perimeter may be assumed to equal to the width of the channel, and the hydraulic radius to be equal to 
the average depth of water in the area under consideration. In this case, equation (4) is written as 
follows (Baizhigitova, 2020): 
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where 1b  and 2b -  are the widths of compartments 1 and 2, respectively, and are the water 
depths in compartments 1 and 2, respectively.  

For channels covered with an ice layer, G. K. Lotter (Altshul et al, 1973) takes the hydraulic 
radii of individual parts of the flow as equal to the hydraulic radius of the entire flow:  

.
We can express the flux with the Chezy-Manning formula: 
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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Since the slopes of the first and second parts of the cross section are the same, we divide the 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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where: 𝜏𝜏1 and 𝜏𝜏2 – and the average resistivity in the wall sections, respectively, 𝑎𝑎 – apparently, 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  

We find the equation (17) by substituting the following equation (16): 
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Since the slopes of the first and second parts of the cross section are the same, we 

divide the first part of the equation (13) by the second and get it: 
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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=RJ                                                                                                                        (15) 

When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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where: 𝜏𝜏1 and 𝜏𝜏2 – and the average resistivity in the wall sections, respectively, 𝑎𝑎 – apparently, 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  

We find the equation (17) by substituting the following equation (16): 
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Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  
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Since the slopes of the first and second parts of the cross section are the same, we divide the 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  
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Full settlement will be equal: QQQ =+ 21 . 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky’s method. 
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, 

obtained from the basic equation of steady motion for open channels (Altshul et al, 
1984):
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N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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When the walls of the channel are different, this equation should replace by another 
one, for this, it is necessary to separate the liquid between the two sections and formulate 
the equation of motion for the given part by directing the acting forces in the direction of 
the flow. Then, instead of equation (16), we get (Jafari and et all, 2018).
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 

( )а
аRJ
+
+

=
1

21




                                                                                                             (16)  

where: 𝜏𝜏1 and 𝜏𝜏2 – and the average resistivity in the wall sections, respectively, 𝑎𝑎 – apparently, 

the ratio of the wetted perimeters in the two parts to each other, ie 
1

2




=а (Altshul et al, 1984). 

When the walls are homogeneous, the magnitude of the average resistivity related to the 

average depth by the following dependence 2

2

C




= .  

Accordingly, 𝜏𝜏1 and 𝜏𝜏2 can written as follows: 

2

2
1

C





=  ,      2

2
2

C





=     .                                                                                           (17) 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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(Altshul et al, 1984).
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 

( )а
аRJ
+
+

=
1

21




                                                                                                             (16)  
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Full settlement will be equal: QQQ =+ 21 . 
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 2/13/2
11

1
1

1 JR
n

Q =  and 2/13/2
22

2
2

1 JR
n

Q =                                                   (13) 

Since the slopes of the first and second parts of the cross section are the same, we divide the 

first part of the equation (13) by the second and get it: 
2

3/2
2

1
3/2

1

2

1

2

1




R
R

n
n

Q
Q

=  or we can put  21,  және 

R1, R2 found above in this equation (Altshul et al, 1973):   

3/2
3/2

1

2

2

1  







=

а
а

Q
Q

  

After converting the equations, the resulting roughness coefficient is equal to: 

( ) 2/32/3
211 aann +=                                                                                                (14) 

N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky's method.  
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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the ratio of the wetted perimeters in the two parts to each other, ie 
1

2




=а (Altshul et al, 1984). 

When the walls are homogeneous, the magnitude of the average resistivity related to the 

average depth by the following dependence 2

2

C




= .  

Accordingly, 𝜏𝜏1 and 𝜏𝜏2 can written as follows: 

2

2
1

C





=  ,      2

2
2

C





=     .                                                                                           (17) 
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before taking the connection 21  == .  

We find the equation (17) by substituting the following equation (16): 









+

+
= 2

2
2

1

2 1
1 C

a
Ca

RJ 
, that follows RJ

CaC
aCC 
+
+

= 2
2

2
1

21
1                  (18) 

can written as follows:

 Then  =+ 21  when, 



+

=
11  and 



+

=
12    . 

P.N. Belokon gets the values of R1 and R2 from the following expressions:  

 ( )R
a

R






+
==

111

1
1   and  ( )R

a
R







+
==

122

2
2                                          (12) 

Full settlement will be equal: QQQ =+ 21 . 
We can express the flux with the Chezy-Manning formula:  

 2/13/2
11

1
1

1 JR
n

Q =  and 2/13/2
22

2
2

1 JR
n

Q =                                                   (13) 

Since the slopes of the first and second parts of the cross section are the same, we divide the 

first part of the equation (13) by the second and get it: 
2

3/2
2

1
3/2

1

2

1

2

1




R
R

n
n

Q
Q

=  or we can put  21,  және 

R1, R2 found above in this equation (Altshul et al, 1973):   

3/2
3/2

1

2

2

1  







=

а
а

Q
Q
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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where: 𝜏𝜏1 and 𝜏𝜏2 – and the average resistivity in the wall sections, respectively, 𝑎𝑎 – apparently, 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  
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Full settlement will be equal: QQQ =+ 21 . 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 


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=RJ                                                                                                                        (15) 

When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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where: 𝜏𝜏1 and 𝜏𝜏2 – and the average resistivity in the wall sections, respectively, 𝑎𝑎 – apparently, 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 

( )а
аRJ
+
+

=
1

21




                                                                                                             (16)  
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N.N. Pavlovsky assumes that the average speeds of each part are equal throughout the flow 
before taking the connection 21  == .  
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After converting the equations, the resulting roughness coefficient is equal to: 
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N.N. Pavlovsky's method.  
N.N. Pavlovsky summarizes the coefficient of stiffness, the form shown below, obtained from 

the basic equation of steady motion for open channels (Altshul et al, 1984): 
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When the walls of the channel are different, this equation should replace by another one, for 
this, it is necessary to separate the liquid between the two sections and formulate the equation of 
motion for the given part by directing the acting forces in the direction of the flow. Then, instead of 
equation (16), we get (Jafari and et all, 2018). 

( )а
аRJ
+
+

=
1

21




                                                                                                             (16)  
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In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

 The quantity in front of it is called the “quoted coefficient 
of Shezi” and it 

Here, N.N. Pavlovsky RJ  The quantity in front of it is called the "quoted coefficient of Shezi" and 

it прC  indicates that, therefore, equation (19) can be written as follows (Altshul et al, 1984): 

 RJСпр =                                                                                                           (19) 

where
2
2

2
1

21
1

CaC
aCCСпр +

+
= . 

С1 and С2 to determine the values, it is necessary to know the values of the corresponding 
hydraulic radiios 𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 . To determine them, N.N. Pavlovsky considers that the size of the cross-
sectional area of individual parts of the channel is proportional to the size of the wetted perimeter, then 
(Altshul et al, 1984): 

2

1

2

1







= , that follows 




 11 = ,     



 22 =                                                   (20) 

Then we can: 

RR ===






1

1
1 ,   RR ===







2

2
2                                                           (21) 

Then, RRR == 21                                                                                                    (22) 
Knowing the value of the hydraulic radius and one of the well-known formulas when 

determining the Shezy coefficient 𝐶𝐶 = 1
𝑛𝑛 𝑅𝑅𝑦𝑦, the following expression can be obtained for the 

roughness coefficient using (Altshul et al, 1973): 

2
2

2
1

1
ann
aRC y

пр +
+

=                                                                                           (23) 

By introducing the mentioned coefficient of stiffness, N.N. Pavlovsky brings equation (23) to 
the following form: C = 1

𝑛𝑛пр
𝑅𝑅𝑦𝑦 

where: 
a

nann
+
+

=
1

2
2

2
1

                                                                                    (24) 

If the walls of the channel consist of three different parts and the wetted perimeters of the three 
parts, respectively, are different, then the resulting roughness coefficient expression can be written as:  

a
nanan

nпр +
++

=
1

2
3

2
2

2
1

,                                                                                (25)   

here it is: 
1

31




=а . 

In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

 indicates that, therefore, equation (19) can be written as follows 
(Altshul et al, 1984):Here, N.N. Pavlovsky RJ  The quantity in front of it is called the "quoted coefficient of Shezi" and 

it прC  indicates that, therefore, equation (19) can be written as follows (Altshul et al, 1984): 

 RJСпр =                                                                                                           (19) 

where
2
2

2
1

21
1

CaC
aCCСпр +

+
= . 

С1 and С2 to determine the values, it is necessary to know the values of the corresponding 
hydraulic radiios 𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 . To determine them, N.N. Pavlovsky considers that the size of the cross-
sectional area of individual parts of the channel is proportional to the size of the wetted perimeter, then 
(Altshul et al, 1984): 

2

1

2

1







= , that follows 




 11 = ,     



 22 =                                                   (20) 

Then we can: 

RR ===






1

1
1 ,   RR ===







2

2
2                                                           (21) 

Then, RRR == 21                                                                                                    (22) 
Knowing the value of the hydraulic radius and one of the well-known formulas when 

determining the Shezy coefficient 𝐶𝐶 = 1
𝑛𝑛 𝑅𝑅𝑦𝑦, the following expression can be obtained for the 

roughness coefficient using (Altshul et al, 1973): 

2
2

2
1

1
ann
aRC y

пр +
+

=                                                                                           (23) 

By introducing the mentioned coefficient of stiffness, N.N. Pavlovsky brings equation (23) to 
the following form: C = 1

𝑛𝑛пр
𝑅𝑅𝑦𝑦 

where: 
a

nann
+
+

=
1

2
2

2
1

                                                                                    (24) 

If the walls of the channel consist of three different parts and the wetted perimeters of the three 
parts, respectively, are different, then the resulting roughness coefficient expression can be written as:  

a
nanan

nпр +
++

=
1

2
3

2
2

2
1

,                                                                                (25)   

here it is: 
1

31




=а . 

In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

								       (19)
where 

Here, N.N. Pavlovsky RJ  The quantity in front of it is called the "quoted coefficient of Shezi" and 

it прC  indicates that, therefore, equation (19) can be written as follows (Altshul et al, 1984): 

 RJСпр =                                                                                                           (19) 

where
2
2

2
1

21
1

CaC
aCCСпр +

+
= . 

С1 and С2 to determine the values, it is necessary to know the values of the corresponding 
hydraulic radiios 𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 . To determine them, N.N. Pavlovsky considers that the size of the cross-
sectional area of individual parts of the channel is proportional to the size of the wetted perimeter, then 
(Altshul et al, 1984): 

2

1

2

1







= , that follows 




 11 = ,     



 22 =                                                   (20) 

Then we can: 

RR ===






1

1
1 ,   RR ===







2

2
2                                                           (21) 

Then, RRR == 21                                                                                                    (22) 
Knowing the value of the hydraulic radius and one of the well-known formulas when 

determining the Shezy coefficient 𝐶𝐶 = 1
𝑛𝑛 𝑅𝑅𝑦𝑦, the following expression can be obtained for the 

roughness coefficient using (Altshul et al, 1973): 

2
2

2
1

1
ann
aRC y

пр +
+

=                                                                                           (23) 

By introducing the mentioned coefficient of stiffness, N.N. Pavlovsky brings equation (23) to 
the following form: C = 1

𝑛𝑛пр
𝑅𝑅𝑦𝑦 

where: 
a

nann
+
+

=
1

2
2

2
1

                                                                                    (24) 

If the walls of the channel consist of three different parts and the wetted perimeters of the three 
parts, respectively, are different, then the resulting roughness coefficient expression can be written as:  

a
nanan

nпр +
++

=
1

2
3

2
2

2
1

,                                                                                (25)   

here it is: 
1

31




=а . 

In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

.

С1 and С2 to determine the values, it is necessary to know the values of the 
corresponding hydraulic radiios R1 and R2. To determine them, N.N. Pavlovsky considers 
that the size of the cross-sectional area of individual parts of the channel is proportional 
to the size of the wetted perimeter, then (Altshul et al, 1984):

Here, N.N. Pavlovsky RJ  The quantity in front of it is called the "quoted coefficient of Shezi" and 

it прC  indicates that, therefore, equation (19) can be written as follows (Altshul et al, 1984): 

 RJСпр =                                                                                                           (19) 

where
2
2

2
1

21
1

CaC
aCCСпр +

+
= . 

С1 and С2 to determine the values, it is necessary to know the values of the corresponding 
hydraulic radiios 𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 . To determine them, N.N. Pavlovsky considers that the size of the cross-
sectional area of individual parts of the channel is proportional to the size of the wetted perimeter, then 
(Altshul et al, 1984): 

2

1

2

1







= , that follows 




 11 = ,     



 22 =                                                   (20) 

Then we can: 

RR ===






1

1
1 ,   RR ===







2

2
2                                                           (21) 

Then, RRR == 21                                                                                                    (22) 
Knowing the value of the hydraulic radius and one of the well-known formulas when 

determining the Shezy coefficient 𝐶𝐶 = 1
𝑛𝑛 𝑅𝑅𝑦𝑦, the following expression can be obtained for the 

roughness coefficient using (Altshul et al, 1973): 

2
2

2
1

1
ann
aRC y

пр +
+

=                                                                                           (23) 

By introducing the mentioned coefficient of stiffness, N.N. Pavlovsky brings equation (23) to 
the following form: C = 1

𝑛𝑛пр
𝑅𝑅𝑦𝑦 

where: 
a

nann
+
+

=
1

2
2

2
1

                                                                                    (24) 

If the walls of the channel consist of three different parts and the wetted perimeters of the three 
parts, respectively, are different, then the resulting roughness coefficient expression can be written as:  

a
nanan

nпр +
++

=
1

2
3

2
2

2
1

,                                                                                (25)   

here it is: 
1

31




=а . 

In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

, that follows 

Here, N.N. Pavlovsky RJ  The quantity in front of it is called the "quoted coefficient of Shezi" and 

it прC  indicates that, therefore, equation (19) can be written as follows (Altshul et al, 1984): 

 RJСпр =                                                                                                           (19) 

where
2
2

2
1

21
1

CaC
aCCСпр +

+
= . 

С1 and С2 to determine the values, it is necessary to know the values of the corresponding 
hydraulic radiios 𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 . To determine them, N.N. Pavlovsky considers that the size of the cross-
sectional area of individual parts of the channel is proportional to the size of the wetted perimeter, then 
(Altshul et al, 1984): 

2

1

2

1







= , that follows 




 11 = ,     



 22 =                                                   (20) 

Then we can: 

RR ===






1

1
1 ,   RR ===







2

2
2                                                           (21) 

Then, RRR == 21                                                                                                    (22) 
Knowing the value of the hydraulic radius and one of the well-known formulas when 

determining the Shezy coefficient 𝐶𝐶 = 1
𝑛𝑛 𝑅𝑅𝑦𝑦, the following expression can be obtained for the 

roughness coefficient using (Altshul et al, 1973): 

2
2

2
1

1
ann
aRC y

пр +
+

=                                                                                           (23) 

By introducing the mentioned coefficient of stiffness, N.N. Pavlovsky brings equation (23) to 
the following form: C = 1

𝑛𝑛пр
𝑅𝑅𝑦𝑦 

where: 
a

nann
+
+

=
1

2
2

2
1

                                                                                    (24) 

If the walls of the channel consist of three different parts and the wetted perimeters of the three 
parts, respectively, are different, then the resulting roughness coefficient expression can be written as:  

a
nanan

nпр +
++

=
1

2
3

2
2

2
1

,                                                                                (25)   

here it is: 
1

31




=а . 

In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

,  

Here, N.N. Pavlovsky RJ  The quantity in front of it is called the "quoted coefficient of Shezi" and 

it прC  indicates that, therefore, equation (19) can be written as follows (Altshul et al, 1984): 

 RJСпр =                                                                                                           (19) 

where
2
2

2
1

21
1

CaC
aCCСпр +

+
= . 

С1 and С2 to determine the values, it is necessary to know the values of the corresponding 
hydraulic radiios 𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 . To determine them, N.N. Pavlovsky considers that the size of the cross-
sectional area of individual parts of the channel is proportional to the size of the wetted perimeter, then 
(Altshul et al, 1984): 

2

1

2

1







= , that follows 




 11 = ,     



 22 =                                                   (20) 

Then we can: 

RR ===






1

1
1 ,   RR ===







2

2
2                                                           (21) 

Then, RRR == 21                                                                                                    (22) 
Knowing the value of the hydraulic radius and one of the well-known formulas when 

determining the Shezy coefficient 𝐶𝐶 = 1
𝑛𝑛 𝑅𝑅𝑦𝑦, the following expression can be obtained for the 

roughness coefficient using (Altshul et al, 1973): 

2
2

2
1

1
ann
aRC y

пр +
+

=                                                                                           (23) 

By introducing the mentioned coefficient of stiffness, N.N. Pavlovsky brings equation (23) to 
the following form: C = 1

𝑛𝑛пр
𝑅𝑅𝑦𝑦 

where: 
a

nann
+
+

=
1

2
2

2
1

                                                                                    (24) 

If the walls of the channel consist of three different parts and the wetted perimeters of the three 
parts, respectively, are different, then the resulting roughness coefficient expression can be written as:  

a
nanan

nпр +
++

=
1

2
3

2
2

2
1

,                                                                                (25)   

here it is: 
1

31




=а . 

In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 

				    (20)

Then we can:



65

ISSN 2224-5278 1. 2023
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If the walls of the channel consist of three different parts and the wetted perimeters of the three 
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In conclusion, N.N. Pavlovsky writes that his proposed method for determining the coefficient 
of stiffness is likely to change in the future after additional research (Sarsekeev et al, 1990). 

Results and discussion. As the available experimental studies show, in the case of different 
types of roughness in the channel cross-section, the hydraulic conditions of the flow movement are 
complicated by the formation of new sections with various obstacles, and as a result of this, the planar 
and vertical distribution of velocities on the cross-section undergoes drastic changes (Mai and et all, 
2019). In it, in the surface layer of the flow, the center of gravity of the velocity graph moves to the 
lower side of the roughness value, so the area of influence of the high roughness region spreads over 
the majority of the flow section (Mikhalev, 1981). 

 The line of zero, indirect voltages correspond to the maximum values of the speeds. Along 
this line, the flow divided into two parts, each of which begins to act under the influence of one 
roughness (Musin, 2012). Based on this rule, we can consider each part of the flow lying on the line of 
zero lateral voltages as a separate channel and apply to them the derived formula for uniform motion, 
the Chezy formula (Musin et al, 2002). In order to summarize the main calculation relationship, we 
make the following point, regardless of the different roughness of the channel bottom, the state of 
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 The line of zero, indirect voltages correspond to the maximum values of the speeds. 
Along this line, the flow divided into two parts, each of which begins to act under the 
influence of one roughness (Musin, 2012). Based on this rule, we can consider each part 
of the flow lying on the line of zero lateral voltages as a separate channel and apply to 
them the derived formula for uniform motion, the Chezy formula (Musin et al, 2002). 
In order to summarize the main calculation relationship, we make the following point, 
regardless of the different roughness of the channel bottom, the state of steady movement 
of the flow maintained, and that is, the roughness of the channel walls remains the same 
for the entire area under consideration (Altshul et al, 1984).
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At the same time, we accept tolerance values accepted in general hydraulics. The 
magnitude of slope contributing to movement in individual parts of the flow is the same 
everywhere; the velocities on the individual surface of any straight section of the cross 
section are the same for the first and second parts of the flow and are equal to the highest 
(maximum) speed (Altshul et al, 1973). 

In general, in order to determine the average roughness of the channel base and frames 
we assume that the cross-sectional area of the channel roughly divided the moisture 
content of the channel 
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321 ,,   and the roughness coefficients Nnnn ..., 21 .  
When calculating the, well-known scientists Horton and Einstein made the following 

recommendations (Wang and et all, 2018), the velocities in the sections under consideration are the 
same and the average speed at any point is equal, while the stiffness coefficient we determine can be 
defined as: 
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Pavlovsky, and Mühlhofer, Einstein, and Bank (Sun and et all, 2020) suggest the way to find 
the channel stiffness coefficient as follows: 
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 In addition, one scientist Lotter suggests to define it as follows (Altshul et al, 1973). 
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where, NRRR ,..., 21 - hydraulic radii of the obtained plots. For any section 

RRRR N ==== ...21  will be. 
The roughness of the bottom of the channel may change due to ice freezing on the water 

surface in the channel. In order to explain this phenomenon, Lotter (Altshul et al, 1973) concluded that 
the roughness values of channels with a deep channel and frozen surface can be found as follows 
(Yerzhanova et al, 2017). 
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layer. However, the coefficient calculated in this way may sometimes have a negative sign, but this 
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 To get closer to the true solution of this problem, according to Pavlovsky (Altshul et al, 1984), 
it is necessary to assume that the total resistance to fluid movement is equal to the sum of the 
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Pavlovsky, and Mühlhofer, Einstein, and Bank (Sun and et all, 2020) suggest the way to find 
the channel stiffness coefficient as follows: 
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 In addition, one scientist Lotter suggests to define it as follows (Altshul et al, 1973). 
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where, NRRR ,..., 21 - hydraulic radii of the obtained plots. For any section 

RRRR N ==== ...21  will be. 
The roughness of the bottom of the channel may change due to ice freezing on the water 

surface in the channel. In order to explain this phenomenon, Lotter (Altshul et al, 1973) concluded that 
the roughness values of channels with a deep channel and frozen surface can be found as follows 
(Yerzhanova et al, 2017). 
 

Table 1 - Approximate values of the roughness coefficients of the bottom of channels with ice on the surface 
Ice formation Flow rate in the channel, cm/s Coefficient of roughness 

Glossy finish: 
ice floes 
 

 
0,39 – 0,6 
0,6-high 
0,39-0,6 
0,6-high 

 
0,01-0,012 

0,014-0,017 
0,016-0,018 
0,017-0,02 

There is floating ice, the surface is rough and rough - 0,023-0,025 
 
 For example, n1 and n2 – stiffness coefficients of the channel with a layer of ice and the 
channel free of ice. Using equations (1) and (3) above, you can find the stiffness coefficient of the ice 
layer. However, the coefficient calculated in this way may sometimes have a negative sign, but this 
does not have any effect (Altshul et al, 1973). 
 To get closer to the true solution of this problem, according to Pavlovsky (Altshul et al, 1984), 
it is necessary to assume that the total resistance to fluid movement is equal to the sum of the 

- hydraulic radii of the obtained plots. For any section

steady movement of the flow maintained, and that is, the roughness of the channel walls remains the 
same for the entire area under consideration (Altshul et al, 1984). 

At the same time, we accept tolerance values accepted in general hydraulics. The magnitude of 
slope contributing to movement in individual parts of the flow is the same everywhere; the velocities 
on the individual surface of any straight section of the cross section are the same for the first and 
second parts of the flow and are equal to the highest (maximum) speed (Altshul et al, 1973).  

In general, in order to determine the average roughness of the channel base and frames we 
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321 ,,   and the roughness coefficients Nnnn ..., 21 .  
When calculating the, well-known scientists Horton and Einstein made the following 

recommendations (Wang and et all, 2018), the velocities in the sections under consideration are the 
same and the average speed at any point is equal, while the stiffness coefficient we determine can be 
defined as: 
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where, NRRR ,..., 21 - hydraulic radii of the obtained plots. For any section 
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The roughness of the bottom of the channel may change due to ice freezing on the water 

surface in the channel. In order to explain this phenomenon, Lotter (Altshul et al, 1973) concluded that 
the roughness values of channels with a deep channel and frozen surface can be found as follows 
(Yerzhanova et al, 2017). 
 

Table 1 - Approximate values of the roughness coefficients of the bottom of channels with ice on the surface 
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0,01-0,012 

0,014-0,017 
0,016-0,018 
0,017-0,02 

There is floating ice, the surface is rough and rough - 0,023-0,025 
 
 For example, n1 and n2 – stiffness coefficients of the channel with a layer of ice and the 
channel free of ice. Using equations (1) and (3) above, you can find the stiffness coefficient of the ice 
layer. However, the coefficient calculated in this way may sometimes have a negative sign, but this 
does not have any effect (Altshul et al, 1973). 
 To get closer to the true solution of this problem, according to Pavlovsky (Altshul et al, 1984), 
it is necessary to assume that the total resistance to fluid movement is equal to the sum of the 
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The roughness of the bottom of the channel may change due to ice freezing on the 

water surface in the channel. In order to explain this phenomenon, Lotter (Altshul et al, 
1973) concluded that the roughness values of channels with a deep channel and frozen 
surface can be found as follows (Yerzhanova et al, 2017).
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Table 1 - Approximate values of the roughness coefficients of the bottom of channels with ice on the 
surface

Ice formation Flow rate in the channel, cm/s Coefficient of roughness
Glossy finish:
ice floes 0,39 – 0,6

0,6-high
0,39-0,6
0,6-high

0,01-0,012
0,014-0,017
0,016-0,018
0,017-0,02

There is floating ice, the surface is rough and 
rough

- 0,023-0,025

For example, n1 and n2 – stiffness coefficients of the channel with a layer of ice and 
the channel free of ice. Using equations (1) and (3) above, you can find the stiffness 
coefficient of the ice layer. However, the coefficient calculated in this way may 
sometimes have a negative sign, but this does not have any effect (Altshul et al, 1973).

To get closer to the true solution of this problem, according to Pavlovsky (Altshul et 
al, 1984), it is necessary to assume that the total resistance to fluid movement is equal to 
the sum of the resistance forces formed by the bottom of the channel and the ice layer, 
then it turns out that	

resistance forces formed by the bottom of the channel and the ice layer, then it turns out that

 2
2

21
2

1
2  lklkk +=                                                                              (29) 

Where subscripts 1 and 2 refer to channel bottom and ice sheet, respectively (Chow, 1969). If 
the flow and roughness of the channel are known, then the Manning formula can be used to determine 
the slope of the flow during uniform movement in the prismatic channel with the given average 
equilibrium value (Musin and et all, 2005). 

A slope determined in this way called a normal slope. A uniform surface flow at a normal 
slope can be either turbulent or laminar depending on factors such as flow, slope, viscosity, and 
surface roughness. If the flow velocity and depth are relatively small, viscosity becomes the dominant 
factor and the flow moves in laminar mode. A brief look at the details of water movement in canals 
shows that it is a very complex process (Altshul et al, 1984). 

In general, the solution of the main design relationship consists in determining the wetted 
perimeters and areas that fall into individual roughness-valued cross-sections. Determining the wetted 
perimeters of individual parts does not cause too many difficulties, and they defined as the 
corresponding facet of the geometric figure. It should note that the edge of the wall should lie on the 
considered base of the channel.  

However, it is a very difficult problem to determine the area of figures that meet walls of 
individual thickness. The methods of P.N. Belokon, G.K. Lotter, N.N. Pavlovsky and E.E. Shiperko 
known in the scientific literature (Altshul and et all, 1973). Based on large assumptions (assumptions) 
about equality, but they have not confirmed in practice. Current measurements in laboratory 
conditions, performed by us and other authors, show that they differ significantly, and they allow 
significant errors in calculations. So, we come to the following conclusion, trying to solve the problem 
of the stiffness coefficient using generally accepted methods did not allow us to get the results we 
needed: it is not enough to use only the equation of steady motion, and therefore, it is necessary to 
consider other ways of solving the problem. In our opinion, it is the simplest method to which all 
authors dealing with the problems of channel calculation of various complexity should apply. 

Conclusions. In natural conditions, many factors affect the roughness coefficient of the 
channel bed, taking them into account, the well-known scientist Kovan proposed to find the given 
roughness coefficient with the following relationship [2]: ( ) 543210 mnnnnnn ++++=                                                                        
(30) 

they are, n0 – the value of the roughness coefficient for canals where the bottom soil is natural 
and shiny; n1 – a coefficient that takes into account the fact that the bottom of the canal is made of 
different soils; n2 – coefficient that takes into account and calculates the parameters of the channel 
section; n3 – coefficient that estimates the probability of an obstruction downstream; n4 – coefficient 
that takes into account the nature of the mode of movement of water in the channel and the barrier 
effect of vegetation on the bottom; m5 – coefficient that evaluates the consequences of the meandering 
of the considered water channel (Altshul et al, 1973). 

The components of the roughness coefficient representing the resistance state of the channel 
base, depending on the characteristics and conditions of formation of channels and open channels, 
likely accepted based on the table below (Altshul et al, 1984). 

 
Table 2 – Finding the coefficient of friction for a given duct channel 

Factors that influence the value of the 
coefficient of stiffness of the channel base 

Characteristics of 
sequences influencing 
channel bed roughness 

Determining the 
stiffness 

coefficient 

The value of the 
coefficient to be taken 

for calculations 
Soil at the bottom of the canal channel Soil  

Broken stone  
Crushed gravel  
Raw gravel 

n0 0,02 
0,025 
0,024 
0,028 

The level of inhomogeneity of the canal bed 
surface 

Unremarkable (glossy 
surface)  
It was barely noticeable 
Average  
It was noticeable 

n1 0 
0,005 
0,01 
0,02 

Change of channel cross-section Slowly  
By accident  

n2 0 
0,005 

						      (29)

Where subscripts 1 and 2 refer to channel bottom and ice sheet, respectively (Chow, 
1969). If the flow and roughness of the channel are known, then the Manning formula 
can be used to determine the slope of the flow during uniform movement in the prismatic 
channel with the given average equilibrium value (Musin and et all, 2005).

A slope determined in this way called a normal slope. A uniform surface flow at a 
normal slope can be either turbulent or laminar depending on factors such as flow, slope, 
viscosity, and surface roughness. If the flow velocity and depth are relatively small, 
viscosity becomes the dominant factor and the flow moves in laminar mode. A brief 
look at the details of water movement in canals shows that it is a very complex process 
(Altshul et al, 1984).

In general, the solution of the main design relationship consists in determining the 
wetted perimeters and areas that fall into individual roughness-valued cross-sections. 
Determining the wetted perimeters of individual parts does not cause too many 
difficulties, and they defined as the corresponding facet of the geometric figure. It should 
note that the edge of the wall should lie on the considered base of the channel. 

However, it is a very difficult problem to determine the area of figures that meet walls 
of individual thickness. The methods of P.N. Belokon, G.K. Lotter, N.N. Pavlovsky and 
E.E. Shiperko known in the scientific literature (Altshul and et all, 1973). Based on 
large assumptions (assumptions) about equality, but they have not confirmed in practice. 
Current measurements in laboratory conditions, performed by us and other authors, 
show that they differ significantly, and they allow significant errors in calculations. 
So, we come to the following conclusion, trying to solve the problem of the stiffness 
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coefficient using generally accepted methods did not allow us to get the results we 
needed: it is not enough to use only the equation of steady motion, and therefore, it 
is necessary to consider other ways of solving the problem. In our opinion, it is the 
simplest method to which all authors dealing with the problems of channel calculation 
of various complexity should apply.

Conclusions. In natural conditions, many factors affect the roughness coefficient of 
the channel bed, taking them into account, the well-known scientist Kovan proposed to 
find the given roughness coefficient with the following relationship [2]:	

resistance forces formed by the bottom of the channel and the ice layer, then it turns out that
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Where subscripts 1 and 2 refer to channel bottom and ice sheet, respectively (Chow, 1969). If 
the flow and roughness of the channel are known, then the Manning formula can be used to determine 
the slope of the flow during uniform movement in the prismatic channel with the given average 
equilibrium value (Musin and et all, 2005). 

A slope determined in this way called a normal slope. A uniform surface flow at a normal 
slope can be either turbulent or laminar depending on factors such as flow, slope, viscosity, and 
surface roughness. If the flow velocity and depth are relatively small, viscosity becomes the dominant 
factor and the flow moves in laminar mode. A brief look at the details of water movement in canals 
shows that it is a very complex process (Altshul et al, 1984). 

In general, the solution of the main design relationship consists in determining the wetted 
perimeters and areas that fall into individual roughness-valued cross-sections. Determining the wetted 
perimeters of individual parts does not cause too many difficulties, and they defined as the 
corresponding facet of the geometric figure. It should note that the edge of the wall should lie on the 
considered base of the channel.  

However, it is a very difficult problem to determine the area of figures that meet walls of 
individual thickness. The methods of P.N. Belokon, G.K. Lotter, N.N. Pavlovsky and E.E. Shiperko 
known in the scientific literature (Altshul and et all, 1973). Based on large assumptions (assumptions) 
about equality, but they have not confirmed in practice. Current measurements in laboratory 
conditions, performed by us and other authors, show that they differ significantly, and they allow 
significant errors in calculations. So, we come to the following conclusion, trying to solve the problem 
of the stiffness coefficient using generally accepted methods did not allow us to get the results we 
needed: it is not enough to use only the equation of steady motion, and therefore, it is necessary to 
consider other ways of solving the problem. In our opinion, it is the simplest method to which all 
authors dealing with the problems of channel calculation of various complexity should apply. 

Conclusions. In natural conditions, many factors affect the roughness coefficient of the 
channel bed, taking them into account, the well-known scientist Kovan proposed to find the given 
roughness coefficient with the following relationship [2]: ( ) 543210 mnnnnnn ++++=                                                                        
(30) 

they are, n0 – the value of the roughness coefficient for canals where the bottom soil is natural 
and shiny; n1 – a coefficient that takes into account the fact that the bottom of the canal is made of 
different soils; n2 – coefficient that takes into account and calculates the parameters of the channel 
section; n3 – coefficient that estimates the probability of an obstruction downstream; n4 – coefficient 
that takes into account the nature of the mode of movement of water in the channel and the barrier 
effect of vegetation on the bottom; m5 – coefficient that evaluates the consequences of the meandering 
of the considered water channel (Altshul et al, 1973). 

The components of the roughness coefficient representing the resistance state of the channel 
base, depending on the characteristics and conditions of formation of channels and open channels, 
likely accepted based on the table below (Altshul et al, 1984). 

 
Table 2 – Finding the coefficient of friction for a given duct channel 

Factors that influence the value of the 
coefficient of stiffness of the channel base 

Characteristics of 
sequences influencing 
channel bed roughness 

Determining the 
stiffness 

coefficient 

The value of the 
coefficient to be taken 

for calculations 
Soil at the bottom of the canal channel Soil  

Broken stone  
Crushed gravel  
Raw gravel 

n0 0,02 
0,025 
0,024 
0,028 

The level of inhomogeneity of the canal bed 
surface 

Unremarkable (glossy 
surface)  
It was barely noticeable 
Average  
It was noticeable 

n1 0 
0,005 
0,01 
0,02 

Change of channel cross-section Slowly  
By accident  

n2 0 
0,005 

						      (30)

they are, n0 – the value of the roughness coefficient for canals where the bottom soil 
is natural and shiny; n1 – a coefficient that takes into account the fact that the bottom of 
the canal is made of different soils; n2 – coefficient that takes into account and calculates 
the parameters of the channel section; n3 – coefficient that estimates the probability of an 
obstruction downstream; n4 – coefficient that takes into account the nature of the mode 
of movement of water in the channel and the barrier effect of vegetation on the bottom; 
m5 – coefficient that evaluates the consequences of the meandering of the considered 
water channel (Altshul et al, 1973).

The components of the roughness coefficient representing the resistance state of the 
channel base, depending on the characteristics and conditions of formation of channels 
and open channels, likely accepted based on the table below (Altshul et al, 1984).

Table 2 – Finding the coefficient of friction for a given duct channel
Factors that influence the value of the 
coefficient of stiffness of the channel 

base

Characteristics of 
sequences influencing 
channel bed roughness

Determining 
the stiffness 
coefficient

The value of the 
coefficient to be taken 

for calculations

Soil at the bottom of the canal channel Soil 
Broken stone 
Crushed gravel 
Raw gravel

n0 0,02
0,025
0,024
0,028

The level of inhomogeneity of the 
canal bed surface

Unremarkable (glossy 
surface) 
It was barely noticeable 
Average 
It was noticeable

n1 0
0,005
0,01
0,02

Change of channel cross-section Slowly 
By accident 
Repeated many times

n2 0
0,005

0,01-0,015
Effect of obstacles in the channel Unremarkable 

Only a little 
As you know 
Сonsiderably

n3

0
0,01-0,015
0,02-0,03
0,04-0,06

Effect of vegetation on the channel 
bed

Down 
Average
Top 
So much

n4

0,05-0,01
0,01-0,025
0,025-0,05
0,05-0,1



69

ISSN 2224-5278 1. 2023

The degree to which a channel or 
channel course is bent

Unnoticeable 
Observable 
Very high

m5 1
1,15
1,3

It is necessary to calculate n1 when determining the value of the coefficient, the degree 
of inhomogeneity of the surface of the channel base to found can calculated. The value 
is estimated with a homogeneous surface; but only a small fraction of these amounts is 
obtained for deeply dug, slightly flushed canal frames or water mules (Sun et al, 2020).

When selecting the value of the coefficient n2, which describes the change in the 
parameters of the channel or channel cross-section, the elements of the channel cross-
section are determined (Koibakov et al, 2020).

The coefficient n3, which takes into account the presence of obstacles in the canal 
channel, is described when there are obstacles such as sediment accumulation, tree roots, 
roots protruding from the surface, various large stones, fallen and horizontal standing. 
When determining the factor n4, which takes into account the influence of vegetation 
growing in the canal channel and foot, the level of herbivory controlled (Wang et al, 
2018).

To perform calculations, we set the speed of the water depth in the channel at 0.2h 
as i0.2, that is, the bottom is taken at a distance of 0.8 h from the bottom of the channel, 
where h is the average water depth (Altshul et al, 1984). The velocity at a depth of 0.2 
h given by the following relationship

Repeated many times 0,01-0,015 
Effect of obstacles in the channel Unremarkable  

Only a little  
As you know  
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n3 

0 
0,01-0,015 
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Top  
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0,05-0,1 

The degree to which a channel or channel 
course is bent 

Unnoticeable  
Observable  
Very high 

m5 1 
1,15 
1,3 

 
 It is necessary to calculate n1 when determining the value of the coefficient, the degree of 
inhomogeneity of the surface of the channel base to found can calculated. The value is estimated with 
a homogeneous surface; but only a small fraction of these amounts is obtained for deeply dug, slightly 
flushed canal frames or water mules (Sun et al, 2020). 

When selecting the value of the coefficient n2, which describes the change in the parameters of 
the channel or channel cross-section, the elements of the channel cross-section are determined 
(Koibakov et al, 2020). 

The coefficient n3, which takes into account the presence of obstacles in the canal channel, is 
described when there are obstacles such as sediment accumulation, tree roots, roots protruding from 
the surface, various large stones, fallen and horizontal standing. When determining the factor n4, 
which takes into account the influence of vegetation growing in the canal channel and foot, the level of 
herbivory controlled (Wang et al, 2018). 

To perform calculations, we set the speed of the water depth in the channel at 0.2h as i0.2, that 
is, the bottom is taken at a distance of 0.8 h from the bottom of the channel, where h is the average 
water depth (Altshul et al, 1984). The velocity at a depth of 0.2 h given by the following relationship 
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24lg75,52,0 = .                                                                          (31) 

 The required water velocity at a depth of 0.8h at different (Yerzhanova et al, 2017) velocities 
can found as follows  
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We pass from the circular channel to the trapezoidal channel 
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They are x=u0,2/u0,8. 
 Substituting the value R=h into the given equation (33), we obtain (Chow, 1969): 
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Equating the first parts of equations (34) and (35) found according to the calculation results, 
we get the formula value of n (Altshul et al, 1984): 
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Because of summarizing the equation for finding the roughness coefficient at the base of the 
open channel, we obtained equation (Altshul et al, 1984). As we can see from the equation, it mainly 
depends on the ratio of the velocities at the depths of 0.2х and 0.8х in the channel and the value of the 
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Equating the first parts of equations (34) and (35) found according to the calculation 
results, we get the formula value of n (Altshul et al, 1984):
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open channel, we obtained equation (Altshul et al, 1984). As we can see from the equation, it mainly 
depends on the ratio of the velocities at the depths of 0.2х and 0.8х in the channel and the value of the 
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Because of summarizing the equation for finding the roughness coefficient at the 
base of the open channel, we obtained equation (Altshul et al, 1984). As we can see from 
the equation, it mainly depends on the ratio of the velocities at the depths of 0.2х and 
0.8х in the channel and the value of the average depth in the channel. In order to check 
the accuracy of this equation, the results of physical control on the relationship between 
channel stiffness and average depth used as a basis.
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